汽车电子电气架构(EEA,Electrical/Electronic Architecture)把汽车中的各类传感器、ECU(电子控制单元)、线束拓扑和电子电气分配系统整合在一起完成运算、动力和能量的分配,进而实现整车的各项功能。
如果将汽车比作人体,汽车的机械结构相当于人的骨骼,动力、转向相当于人的四肢,电子电气架构则相当于人的神经系统和大脑,是汽车实现信息交互和复杂操作的关键。
(资料图片仅供参考)
电子电气架构的发展
电子电气架构涵盖了车上计算和控制系统的软硬件、传感器、通信网络、电气分配系统等;它通过特定的逻辑和规范将各个子系统有序结合起来,构成实现复杂功能的有机整体。
功能车时代,汽车一旦出厂,用户体验就基本固化;智能车时代,汽车常用常新,千人千面,电子电气架构向集中化演进是这一转变的前提。
从分布式到域控制再到集中式,随着芯片和通信技术的发展,电子电气架构正在发生巨大的变化。
分布式电子电气架构不堪重负
汽车诞生之初是个纯机械产品,车上没有蓄电池,车上的设备亦不需要电力,1927 年博世开发出铅蓄电池,从此车上的电子设备才有了可靠的电力来源。
大规模集成电路的发展让汽车电子得以快速发展,发动机定时点火控制系统、电控燃油喷射系统、自动变速箱控制系统、牵引力控制系统、电控悬架系统、电控座椅、电控车窗、仪表、电控空调、汽车电子稳定控制系统等,逐步成为了汽车不可或缺的组成部分。
汽车电子控制技术逐步发展壮大,为消费者提供了更高性能、更舒适、更安全的出行工具。
早期分布式的电子电气架构下,每个 ECU 通常只负责控制一个单一的功能单元,彼此独立,分别控制着发动机、刹车、车门等部件,常见的有发动机控制器(ECM)、传动系统控制器(TCM)、制动控制器(BCM)、电池管理系统(BMS)等。
各个 ECU 之间通过 CAN(Controller Area Network,控制器域网络)总线或者 LIN(Local Interconnect Network,局部互联网络)总线连接在一起,通过厂商预先定义好的通信协议交换信息。
随着整车电子电气产品应用的增加,ECU 的数量从几十个快速增加到 100 多个,ECU 数量越多,对应的总线的线束长度必将越长,线束重量也相应增加(2007 年上市的奥迪 Q7 和保时捷卡宴的总线长度超 6km,总重量超 70kg,是全车重量仅次于发动机的部件),这就导致整车成本增加、汽车组装的自动化水平低。
汽车分布式电子电气架构已不能适应汽车智能化的进一步进化。高度集成是解决之道。
基于少量高性能处理器打造汽车的“大脑”,通过一套新型的电子电气架构,形成快速传递信息的“神经网络”和“血管”,以控制和驱动所有电子件和传感器。
少量的高性能计算单元替代过去大量分布式 MCU(微控制单元),多个分散的小传感器集成为功能更强的单个传感器,汽车 、功能逐步整合集中,ECU 的减负意味着把整车原先搭载的几十上百个 ECU逐一进行软硬件剥离,再把功能主要通过软件迁移到域控制器(域控制器是指域主控硬件、操作系统、算法和应用软件等几部分组成的整个系统的统称)中,如自动驾驶、娱乐、网关等,在域控制器架构的基础上,更进一步把不同功能的域进行整合,就到了跨域融合阶段,再进一步到中央计算+位置域阶段。
华为判断到 2030 年电子电气架构将演进为中央计算平台+区域接入+大带宽车载通信的计算和通信架构。
汽车电子电气架构的升级主要体现在硬件架构、软件架构、通信架构三方面:硬件架构从分布式向域控制/中央集中式方向发展、软件架构从软硬件高度耦合向分层解耦方向发展、通信架构由LIN/CAN 总线向以太网方向发展。
欢迎关注「智驾最前沿」微信视频号
位置域实现就近布置线束,降低成本,减少通信接口,更易于实现线束的自动化组装从而提高效率。传感器、执行器等就近接入到附近的区域控制器中,能更好实现硬件扩展,区域控制器的结构管理更容易。区域接入+中央计算保证了整车架构的稳定性和功能的扩展性,新增的外部部件可以基于区域网关接入,硬件的可插拔设计支持算力不断提升,充足的算力支持应用软件在中央计算平台迭代升级。
在一项针对某家整车制造商的研究中,安波福发现,使用区域控制器可以整合 9个 ECU,并少用数百根单独电线,从而使车辆的重量减少了 8.5千克。减重有助于节能,并延长电动汽车的续驶里程。此外,由于区域控制器将车辆的基本电气结构划分为更易于管理的组成部分,更容易实现自动化线束组装。
2018 年推出的奥迪 A8 率先实现了辅助驾驶功能的集成式控制,取代了 ECU 相互分离的分布式的辅助驾驶系统。
除自动驾驶域集成外,其余底盘+安全、动力、车身、娱乐四大域仍然采用分布式架构。
其自动驾驶域控制器由 4 块芯片组成,Mobileye EyeQ3 负责视觉感知计算,如交通信号识别、行人监测、碰撞报警,车道线识别、光线探测。
英伟达 K1 负责图像融合计算,如驾驶员监测、360 全景摄像头的图像处理。
英特尔 Cyclone V 负责目标融合、地图融合、停车辅助、预刹车灯。英飞凌的 Aurix TC297 负责通信处理。
这个自动驾驶域控制器软件开发由奥地利软件公司 TTTech 完成,德尔福提供硬件集成。
特斯拉是汽车电子电气架构的全面变革者,2012 年 Model S 有较为明显的功能域划分,包括动力域、底盘域、车身域,ADAS 模块横跨了动力和底盘域,由于传统域架构无法满足自动驾驶技术的发展和软件定义汽车的需求,为解耦软硬件,搭载算力更强大的主控芯片,必须先进行电子电气架构的变革,因此 2017 年特斯拉推出的 Model3 突破了功能域的框架,实现了中央计算+区域控制器框架,通过搭建异域融合架构+自主软件平台,不仅实现软件定义汽车,还有效降低整车成本,提高效率:
1)Model 3整车三个控制器,有效降低物料成本;
2)硬件集成为软件,为汽车深度的控制和维护提供基础;
3)自主软件平台通过模块化支持扩展复用。
特斯拉 Model3 基本实现了中央集中式架构的雏形,不过 Model3 距离真正的中央集中式架构还有相当距离:通讯架构以 CAN总线为主,中央计算模块只是形式上将影音娱乐 MCU、自动驾驶 FSD 以及车内外联网模块集成在一块板子上,且各模块独立运行各自的操作系统。但无论如何,Model3 已经践行了中央计算+区域控制的电子电气架构理念框架,领先传统车企 6 年左右。
特斯拉三代车的电子电气架构演进背后的实质是不断把车辆功能从供应商手中拿回来自主开发的过程。
Model3 的自动驾驶模块、娱乐控制模块、其它区域控制器、热管理均为自主设计开发,实现了整车主要模块自主,不依赖 Tier1,即使没有实现自主的模块,特斯拉也与供应商进行了联合开发,比如特斯拉将自己的软件加入到了博世为其提供的 ibooster 里,通过软件更新实现刹车距离变短。
通过三款车型的演进,特斯拉的新型电子电气架构不仅实现了 ECU数量的大幅减少、线束大幅缩短(MODEL S 线束 3000米,Model 3 减少一半以上),更打破了汽车产业旧有的零部件供应体系(即软硬件深度耦合打包出售给主机厂,主机厂议价能力差,后续功能调整困难),真正实现了软件定义汽车,特斯拉的 OTA 可以改变制动距离、开通座椅加热,提供个性化的用户体验,由于突破了功能域,特斯拉的域控制器横跨车身、座舱、底盘及动力域,这使得车辆的功能迭代更为灵活,用户可以体验到车是常用常新的,与之形成鲜明对比的是,大部分传统车厂的 OTA 仅限于车载信息娱乐等功能。
特斯拉为了更好地发挥软件的作用,实现了自动驾驶主控芯片这一最为核心的智能硬件的自研自制(特斯拉认为芯片的专用设计使得其上的软件运行更高效),这意味着后续特斯拉车辆的升级速度、功能的部署都不再依赖外部 SOC 芯片供应商,真正将车辆的灵魂掌握在自己手中。
大众汽车已经从 MQB 平台车型的分布式电子电气架构升级为 MEB 平台 ID 系列车型上采用的三个功能域的电子电气架构。
按规划,基于大众 MEB 平台的 ID系列电子电气架构为 E³1.1版,2023年在 PPE 平台搭载 E³1.2版,到 2025年后才进化到 E³2.0 版。
大众的 E3 架构主要由车辆控制域(ICAS1)、智能驾驶域(ICAS2)和智能座舱域(ICAS3)组成,其中智能驾驶域 ICAS2尚未开发完成,量产车型上搭载的依然是分布式架构方案,大众 ID 系列的电子电气架构虽然有三个功能域,但同时依然保留了较多分布式模块,大众 ID4 有 52 个 ECU,两倍于特斯拉 Model Y ECU数量。
国产 ID4 辅助驾驶功能由 Mobileye 单目摄像头+前长距雷达+两个后角雷达实现,作为平价电动车,在自动驾驶域控制器这块暂时没有选择跟特斯拉和中国新势力去PK。
新势力三强中小鹏汽车在电子电气架构方面走得比较领先,随着车型从 G3、P7 和 P5,迭代到 G9 的这套 X-EEA3.0 电子电气架构,已经进入到中央集中式电子电气架构。
凭借领先一代的架构,搭载更高算力 SOC 芯片及更高算力利用率,小鹏G9 或成首款支持 XPILOT 4.0 智能辅助驾驶系统的量产车。
小鹏 P7 搭载小鹏第二代电子电气架构,具备混合式的特点:
1) 分层域控。功能域控制器(智驾域控制器、车身域控制器、动力域控制器等模块)与中央域控制器并存;
2) 跨域整合——域控制器覆盖多重功能,保留局部的传统 ECU;
3) 混合设计——传统的信号交互和服务交互成为并存设计。
因此 CAN 总线和以太网总线并存,大数据/实时性交互均得以保证;以太网节点少,对网关要求低。
小鹏第二代电子电气架构实现传统 ECU 数量减少约 60%,硬件资源实现高度集成,大部分的车身功能迁移至域控制器,中央处理器可实现支持仪表、信息娱乐系统以及智能车身相关控制的大部分功能,同时集成中央网关,兼容 V2X 的协议,支持车与车的局域网的通信,支持车与云端的互联,车与远程数字终端的连接功能。
小鹏汽车的智能驾驶域控制器,集成了高速 NGP、城市 GNP 及泊车功能。
小鹏辅助驾驶采用激光雷达视觉融合方案,与特斯拉的纯视觉方案不同,这就导致两者硬件架构不同,对于通讯带宽、计算能力的要求也不一样。
长城汽车 2020 年开发的第三代电子电气架构包含 4 个功能域控制器——车身控制、动力底盘、智能座舱、智能驾驶,应用软件自主研发,已实现量产并应用于长城汽车全系车型,车型物料成本得以优化,如新哈弗 H6 优化了 300 米线束,总长度1.6 公里,接近特斯拉 Model 3,减重超 2 公斤。
从 GEEP3.0开始长城汽车实现全部应用层软件自主开发能力,四个域控制器的上层应用软件,甚至部分底层及底层的集成软件亦由长城汽车自主开发。
上汽总工程师祖似杰认为,汽车产品最核心的技术是电子电气架构,且一定要由整车企业掌握。
电子电气架构作为汽车的中枢,将定义很多与此前完全不同的相关标准,因为过去汽车是一个封闭的系统,而未来汽车将是一个开放的系统。自动驾驶汽车普及之后车企要承担行车安全事故责任,安全技术只能自己把握,从这一点出发,车企也要把电子电气架构和中央控制系统牢牢掌握在自己手里,包括电子电气架构之上的车载操作系统、基础应用和服务软件架构等,都要充分理解并融会贯通。
从对整车产品控制权的角度,祖似杰认为,原来汽车产品上的控制器是相互独立的,而且是嵌入式的,整车企业将其中一些交由供应商负责也不会有太大问题,未来汽车产品上的控制系统走向统一,整车企业必须自己掌握中央控制系统,否则就会失去对汽车产品的控制权。而把原本高度分散的控制功能逐步整合统一起来,是车企必须要走的一条正确而艰难的路。
上汽在旗下高端纯电智能车品牌智己、飞凡搭载全栈 1.0 版电子电气架构,全栈 1.0 电子电气架构有 3 个域控制器,即中央计算(车控及数据融合)、智能驾驶、智能座舱,同时还保留了较多分布式模块。
2021 年 7 月启动“零束银河全栈 3.0 技术解决方案”的自主研发,进一步中央集中化,支持 L4级以上自动驾驶,计划 2024 年在上汽旗下智己、飞凡搭载。
零束银河全栈 3.0 电子电气架构使用主从两个高性能计算单元,即 HPC1 和 HPC2 来实现智能驾驶、智能座舱、智能计算、智能驾驶备份功能,再加 4 个区域控制器,实现各自不同区域的相关功能,以全面支撑 L4 以上智能驾驶技术。
底层狭义操作系统(OS)由异构升级为同构;骨干通信带宽扩容至千兆甚至万兆;智能车数据工厂全面实现数字孪生镜像,持续夯实云、管、端智能车网络安全防护体系,加速智能车自学习、自成长和自进化,使车真正成为直连用户的载体和入口、移动的 AIoT 平台和数字化体验空间。
汽车电子架构迈向中央计算,ECU 数量减少,意味着原先软硬一体的模块拆解出来,再进行域控制器的集中,而这并非简单的物理集成,越来越多的主机厂正在收拢更多主导权,从应用层软件到中间件,到底层软件,甚至到核心硬件,都希望实现全栈覆盖,这个过程是主机厂将原先软硬一体的供应商的软件部分抽取出来聚集于自身的过程。受制于现存供应链和自身软件实力弱,这会是一个渐进的过程。一旦电子电气架构进入中央计算+区域控制阶段以后,汽车软件所有权将主要属于主机厂,主机厂将长期享有软件红利,比传统车时代拥有更强的产业链话语权,主机厂将把产品持续更新的命脉握在自己手中。
基于迈向中央计算的电子电气架构,主机厂原有盈利模式将被大幅拓宽。
由于车企拥有大量移动终端,未来将拥有海量数据(涉及车身数据,环境数据,驾驶数据,车内人的各类数据),并可在全生命周期直达用户,据此可衍生出多类业务模式,如软件算法、虚拟司机、出行服务、运营平台、售后服务及诊断等;更长远地看,无人驾驶出现后,车辆出现的软件生态还拥有更广阔的想象空间。
目前一些整车品牌已在进行车辆静止状态下的座舱创新,以激发并满足日益增加的娱乐、休憩等各类需求,这也使得车辆超越了单纯物理移动的意义,类似于智能手机早就超越了单纯的通信意义。
特斯拉车内已内置 22 种游戏,技术部门正努力将 steam 上的游戏库引入旗下车辆,未来特斯拉车机将支持流畅运行 steam。硬件上,2022 年特斯拉全系车辆将搭载 AMD Ryzen 芯片组,性能上媲美最新款的索尼游戏主机 Playstation5。
随着内容生态的日渐丰富,未来汽车可能参与内容的分成,这可能成为一个空间巨大的收入来源。
转载自汽车智库,文中观点仅供分享交流,不代表本公众号立场,如涉及版权等问题,请您告知,我们将及时处理。
-- END --